Arduino Nano Microcontroller ATmega328 Development Board - Arduino Compatible

  • RM23.32

  • Ex Tax: RM22.00
  • Product Code: Arduino Nano
  • Availability: In Stock

The Arduino Nano is a small, complete, and breadboard-friendly board based on the ATmega328. It has more or less the same functionality of the Arduino Duemilanove, but in a different package. It lacks only a DC power jack (An Expansion Shield will solved), and works with a Mini-B USB cable instead of a standard one.

What's new:

  • ATMEGA328 (more flash and ram memory)
  • Blue power LED is on the top
  • A0-A7 pins compatible with Arduino Stamp and Pro Mini
  • Two layers PCB
  • Lower cost
  • Easier to hack the Eagle file

 

Specifications

  • Microcontroller:  ATmega328
  • FT232RL Replace by CH340G
  • Operating Voltage (logic level): 5 V
  • Input Voltage (recommended): 7-12 V
  • Input Voltage (limits): 6-20 V
  • Digital I/O Pins: 14 (of which 6 provide PWM output)
  • Analog Input Pins: 8
  • DC Current per I/O Pin: 40 mA
  • Flash Memory: 16 KB (ATmega168) or 32 KB (ATmega328) of which 2 KB used by bootloader
  • SRAM: 1 KB (ATmega168) or 2 KB (ATmega328)
  • EEPROM: 512 bytes (ATmega168) or 1 KB (ATmega328)
  • Clock Speed: 16 MHz
  • Dimensions: 0.73" x 1.70"
  • Length: 45 mm
  • Width: 18 mm
  • Weight: 5 g

 

Power

The Arduino Nano can be powered via the Mini-B USB connection, 6-20V unregulated external power supply (pin 30), or 5V regulated external power supply (pin 27). The power source is automatically selected to the highest voltage source.

 

Memory

The ATmega328 has 32 KB, (also with 2 KB used for the bootloader). The ATmega328 has 2 KB of SRAM and 1 KB of EEPROM.

 

Input and Output

Each of the 14 digital pins on the Nano can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

  • Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the corresponding pins of the FTDI USB-to-TTL Serial chip.
  • External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
  • PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which, although provided by the underlying hardware, is not currently included in the Arduino language.
  • LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

The Nano has 8 analog inputs, each of which provides 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though it is possible to change the upper end of their range using the analogReference() function. Analog pins 6 and 7 cannot be used as digital pins. Additionally, some pins have specialized functionality:

  • I2C: A4 (SDA) and A5 (SCL). Support I2C (TWI) communication using the Wire library (documentation on the Wiring website).

There are a couple of other pins on the board:

  • AREF. Reference voltage for the analog inputs. Used with analogReference().
  • Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

 

Communication

The Arduino Nano has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega168 and ATmega328 provide UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An CH340G on the board channels this serial communication over USB and the FTDI drivers (included with the Arduino software) provide a virtual com port to software on the computer. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the FTDI chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Nano's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus.

 

Programming

The Arduino Nano can be programmed with the Arduino software. Select "Arduino Diecimila, Duemilanove, or Nano w/ ATmega168" or "Arduino Duemilanove or Nano w/ ATmega328" from the Tools > Board menu (according to the microcontroller on your board).

The ATmega168 or ATmega328 on the Arduino Nano comes preburned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the originalSTK500 protocol.

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header using Arduino ISP or similar.

 

Automatic (Software) Reset

Rather than requiring a physical press of the reset button before an upload, the Arduino Nano is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the FT232RL is connected to the reset line of the ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Nano is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Nano. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data.

 

 


 

Frequently Asked Questions: 
 

  • Are these 100% compatible with the "normal" Arduino's? 
    Yes, they really are 100% completely compatible with "normal" Arduino's. Build quality looks the same and everything (studio, library, tools, etc) just works. You may read the reviews.‚Äč

 

  • What if I'm still concerned about this being named as "Arduino Compatible"? 
    If still in doubt, please buy from Arduino's official dealer channels. Yes they are more expensive. We use these internally ourselves for various electronic projects and find them to be 100% decent (again, check reviews). That said, we do not make these and we are providing all the information we know. 
General
Features CH340G Replace FT232RL Operating Voltage(logic level):5V 8 analog inputs ports:A0 ~ A7 14 Digital input / output ports:TX,RX,D2 ~ D13 6 PWM ports:D3, D5, D6, D9, D10, D11 1 pairs of TTL level serial transceiver ports RX / TX Using Atmel Atmega328P-AU MCU Support USB download and Power Support for external 5V ~ 12V DC power supply Support power supply by 9V battery Support ISP download
Package Includes 1x Nano V3.0 with ATMEGA328P Module for Arduino

Write a review

Note: HTML is not translated!
    Bad           Good

Related Products

Tags: NANO